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Abstract 12 

The building sector has a high potential to reduce energy consumption. Achieving this depends 13 
on household’s choices, which are known to be highly heterogeneous. Agent-based models 14 
are tools used to describe energy choices, but require data demanding calibration. Here we 15 
combine a novel, cross-country European household-level survey -including socio-16 
demographic characteristics, energy-saving habits, energy-saving investments, and metered 17 
household electricity consumption- with a global agent based energy choice model. Cluster 18 
analysis reveals that households who demand and consume energy in very similar ways 19 
cannot easily be mapped to standardly used socio-demographic classes or attitudes. However, 20 
the data also shows interesting patterns both between and within the clusters. Most noticeably, 21 
income, consistently, has the largest effect on demand, dwelling efficiency and energy-saving 22 
investments. Dwelling improvement potential also incentivizes energy efficiency investments.  23 
We use this cluster analysis to calibrate agents of the residential sector of an agent based 24 
model, including also the within cluster variations and uncertainty. Including these various 25 
sources of heterogeneity affects the timing and speed of the transition, two key indicators in 26 
the context of climate change mitigation. The results reinforce the need for grounding agent-27 
based models in real data, to take real advantage of their capabilities and contribute to a better 28 
understanding of energy transition dynamics. 29 
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1. Introduction  1 

Energy use in residential buildings accounts for approx. 25% of the EU’s total final energy 2 
consumption (EC, 2018), and has been the focus of numerous emissions reduction 3 
programmes, such as the Energy Labelling Directive and the Energy Performance of Buildings 4 
Directive. While the potential for reducing residential energy use is substantial (Berardi, 2017), 5 
energy consumption in buildings relies heavily on the residents behavior, depending on 6 
attitudes, habits and consumption patterns. These behaviors attribute to sizeable variation in 7 
households energy consumption and introduces heterogeneity into the likelihood of efficient 8 
technology adoption and other solutions to achieve low energy buildings (Hong, Taylor-Lange, 9 
D’Oca, Yan, & Corgnati, 2016).  10 

Research efforts to better understand this heterogeneous behavior and its drivers are therefore 11 
central to successfully implementing residential energy efficiency policies and programmes 12 
(Lopes, Antunes, & Martins, 2015). There is a vast amount of research that has examined 13 
residential energy-saving behavior, employing a range of disciplinary perspectives ranging 14 
from the more economics-focused research frameworks to theories which incorporate social 15 
and contextual factors (Wilson & Dowlatabadi, 2007). There is consensus that the long-term, 16 
deliberative behaviors of investing in residential energy-saving technologies are also affected 17 
by numerous non-economic drivers and barriers (Klöckner & Nayum, 2017; Hesselink & 18 
Chappin, 2019; Wilson, Crane, & Chryssochoidis, 2014). 19 

Decision-makers in the energy policy domain are often relying on energy system models, and 20 
integrated assessment models (IAMs), that are used to evaluate long-term pathways of climate 21 
change mitigation and conduct global reviews of the energy system (Tavoni et al., 2015). The 22 
heterogeneity of user behavior and energy technology investments is difficult to capture in 23 
these long-term models (McCollum et al. 2017), that focus on high-level trends (Krey, 2014), 24 
and are therefore less suited for the representation of individual choices. This lack of this 25 
representation can lead to several challenges, including inaccurate estimation of demand-side 26 
reduction potential (Sovacool et al., 2015), failure to capture interaction such as social 27 
influence effects (Pettifor, Wilson, McCollum, & Edelenbosch, 2017), and difficulties in 28 
evaluating the impact of behavioural policies (Mundaca, Neij, Worrell, & McNeil, 2010).  29 

The challenges in representing heterogeneous behaviour could be addressed through the use 30 
of agent-based models (ABMs), which can capture the individuality, interactions and varied 31 
drivers of decision making (Farmer & Foley, 2009)(An, 2012). Rai & Henry (2016) therefore 32 
make a compelling argument that for a better understanding of the complexities of energy 33 
choices affecting climate mitigation strategies ABMs should be used to model energy demand 34 
projections. Rai & Robinson (2015), however, point out that there are two key challenges when 35 
developing ABMs: There is a lack of empirical data to appropriately initialize, verify and validate 36 
the models (data challenge), and second: Often behavioral decision rules applied in the models 37 
are introduced in an ad hoc fashion (theoretical challenge) (Durlauf, 2012). 38 

In this paper, we address the first challenge of using empirical data to appropriately define 39 
ABMs capable of modelling realistic behavioural heterogeneity within IAMs. With a focus on 40 
residential energy efficiency, our research asks two main questions: 1) Can empirical data 41 
reveal customer profiles adequate for defining agents in a residential energy ABM? and 2) Can 42 
we use this data to identify drivers of energy-saving investment behaviours and incorporate 43 
them into the ABM? To address these questions, we use a unique, cross-country European 44 
dataset of household-level survey responses, including socio-demographic characteristics, 45 
attitudes, energy-saving habits and energy-saving investments, and metered household 46 
electricity consumption. Through cluster-analysis this dataset is used to explore persistent, 47 



heterogenous patterns and drivers of energy-saving behaviour; and crucially, the availability 1 
of metered electricity usage data allows agent typologies to be related to actual consumption 2 
levels. Moreover, the diversity of questions asked in the survey allows to distinguish between 3 
service demand and energy efficiency contributing to household energy consumption.   4 

This data is applied to the Residential Building Simulation Module (RBSM) ABM, part of  the 5 
new MUSE ® IAM (Sachs, Meng, Giarola, & Hawkes, 2019), designed to represent household 6 
level decision-making affecting technology choices and investment, at a regional scale. The 7 
RBSM is a bottom-up, technology-rich model, characterizing 70 different residential energy 8 
technologies, based on unit technology cost, efficiencies, lifetime and emissions. The model 9 
framework is based on the Theory of Planned Behaviour (Ajzen 2001), and agents’ energy-10 
saving investment behaviour is represented as a step-wise decision-making process for 11 
selecting and implementing energy-saving technologies.  12 

By using empirical data as the starting point for defining agent typologies and investment 13 
behaviours, the aim of this research is to better represent the heterogeneity in user energy 14 
choices in the RSBM, and then examine how this effects the high-level trends of technology 15 
adoption and energy consumption. We find that the data allows to define clusters of household 16 
that act in similar in terms of energy consuming indicators. While patterns between these 17 
cluster in terms of socio-demographics and preferences can be seen, the data also shows a 18 
high level of within cluster variation. Including these various sources of heterogeneity in the 19 
ABM model a significantly different timing and rate of implementation of energy-saving 20 
technologies by households is found, compared to the case where conventional patterns of 21 
demand, consumption and investment are assumed. In the long term the new empirically 22 
grounded ABM does not show different levels up technology uptake, but particularly affects 23 
the development of the transition. 24 

2. Analysis 25 

The data used in this study was collected via two large-scale surveys: PENNY, conducted in 26 
Italy, Switzerland and the Netherlands, and COBHAM, conducted in Italy. 6,138 responses 27 
were recorded, containing information on socio-demographic and socio-psychological 28 
characteristics, dwelling and household characteristics, technologies and energy services 29 

used, and their metered electricity consumption1. More information on the survey can be found 30 

in the Supplementary Materials.  31 

To describe the energy consumption characteristics of respondents, the survey responses 32 
were used to construct a number of “energy efficiency indicators”. Firstly, lighting and appliance 33 
electricity demand were estimated for each respondent household based on their dwelling 34 
characteristics and survey responses related to service level (e.g. floorspace and number of 35 
appliances, see Supplementary Methods). These two indicators are in the paper referred to as 36 
lighting and appliance service demand, and can be seen as the expected electricity use for 37 
that level of service. Secondly, the sum of the lighting and appliance service demand was 38 
compared to the actual metered electricity consumption to produce two energy efficiency 39 
indicators associated with each respondent: 40 

 The “efficiency gap”: the difference between metered electricity consumption and the 41 
appliance and lighting service demand (the values can be positive or negative). The 42 
values were grouped into 5 quintiles, ranging from very efficient dwellings (negative 43 

                                                           
1 There were a large number of missing responses for metered electricity consumption in the Netherlands, leading 

to an under-representation of data from this country. 



efficiency gap, high absolute value) to very inefficient dwellings (positive efficiency gap, 1 

high absolute value)2. 2 

 The “relative savings potential”: the proportion of the efficiency gap compared to the 3 
appliance and lighting service demand, as an indicator of how close a household is to 4 
consuming as much electricity as expected based on its dwelling characteristics, and 5 
also an indicator of the potential energy cost savings. The values were grouped into 5 6 
quintiles, ranging from very high savings potential (i.e. households with the largest 7 
positive efficiency gaps, as a proportion of their estimated electricity demand) to very 8 
low savings potential  (i.e. households with the largest negative efficiency gaps, as a 9 
proportion of their estimated electricity demand). 10 

In addition to these electricity-related indicators, an environmental preferences index was also 11 
constructed, as a simple aggregate of respondents’ scoring of questions on environmental 12 
value, morality, identity and injunctive norms. 13 

The survey responses were clustered based on the lighting service demand, appliance service 14 
demand and the efficiency gap (k-means clustering with Jaccard dissimilarity measure). 15 
Because the sum of these three clustering variables is equal to the metered electricity 16 
consumption, the clustering grouped the data based on the existence of similar patterns in 17 
electricity consumption, as well as lighting and appliance service demand and efficiency gaps. 18 
These groups were then analysed for within- and between-group differences in socio-19 
demographic and socio-psychological characteristics, energy literacy, metered electricity 20 
consumption, energy-saving habits and energy-saving investments. The variables which 21 
showed the strongest between-cluster differences were also fitted to regression models, to 22 
determine whether they were significantly affected by other variables. Supplementary Table 1 23 
provides an overview of all variables analysed.  24 

The resulting clusters were used as a basis for defining and characterizing agents in the 25 
RBSM, and projecting the uptake of residential technologies in the EU-18 residential sector, to 26 
the year 2050. The extension of the model scope from the survey data to the residential 27 
building sector of the EU-183 region is clearly an approximation which could be improved by 28 

using globally available datasets. The goal of this study was not to produce accurate model 29 
projections, but rather to analyse how the use of empirically-based clusters and assumptions 30 
on investment drivers affects the projection of technology uptake by the RBSM.  31 

The age, income and household size distributions within each cluster were linked with data 32 
from the European Union Statistics on Income and Living Conditions (EU-SILC, 2019), to 33 
determine the overall share of the European population represented by each agent. Each 34 
agent was linked to different rules for searching for and deciding to invest in residential energy 35 
technologies, based on the relationship between household characteristics and investment 36 
behaviour identified in the cluster analysis. The drivers of energy-saving investments identified 37 
in the survey data were used to make assumptions about what objectives agents would seek 38 
to fulfil as they make decisions on investing in energy-saving measures. The main objectives 39 
used in the RBSM ABM are:  40 

 Capital cost – agents seek to invest in technologies of a certain capital cost based on 41 
their income constraints and risk preferences; 42 

                                                           
2 Note that those household with electric heating or cooking (which were a small number of respondent 

households) were taken out of the data sample. 
3 EU-18 refers to EU-18: Austria, Belgium, Czech Republic, France, Germany, Greece, Hungary, Ireland, Italy, 

Luxembourg, Netherlands, Poland, Portugal, Slovak Republic, Spain, UK, Slovenia, Estonia (IEA, 2017) 



 Equivalized annual cost (EAC) (the annual cost of owning, operating, and maintaining 1 
an asset over its entire life) – agents will seek to adjust their EAC based on their income 2 
constraints and savings potential;  3 

 Fuel consumption cost – agents will seek to reduce their fuel consumption cost based 4 
on their savings potential; 5 

 Efficiency – agents will seek to adjust the efficiency of their energy use for non-6 
economic reasons 7 

 Emissions – agents will seek to adjust their emissions levels based on their preferences 8 
such as environmental awareness. 9 

A more detailed description of the RSBM can be found in the Supplementary Materials. 10 

To test this empirically-based ABM, in Section 3.2 we compare the outcomes of using the 11 
original, macro-economically-driven agent parameterization that uses links between age, 12 
income level, occupation and housing data but to determine agent groups without considering 13 
information about energy usage, described in Sachs et al., 2019, to the new cluster-driven 14 
model. The cluster-driven model simulates 5 agent clones for the 5 sub-ranges of estimated 15 
electricity demand in each cluster, and each agent clone was duplicated to indicate whether 16 
their investment was in a new residential building or an existing one (retrofit). The ABM code 17 
presented in Sachs et al., 2019 was extended to incorporate this variation. All scenarios were 18 
run with the average carbon tax of the Energy Modelling Forum-27 450ppm full-tech scenario 19 
(Kriegler et al., 2014). The case study does not directly account for the changing carbon 20 
intensity of electricity, but rather considers the influence of the carbon price on the electricity 21 
price as a proxy. 22 

3. Results and discussion  23 

3.1 Description of clusters 24 

The clustering produced an optimal solution of 10 clusters, containing 4,874 responses. Out 25 
of these 10 clusters, 5 were of suitable size for further analysis4 and are presented in Table 1. 26 

Most variables were significantly different between clusters (Table 25), apart from household 27 

size (although significant at p<0.1), and the environmental preference index. This was 28 
confirmed by post-hoc tests of difference. The differences between clusters were strongest  for 29 
the absolute and relative efficiency gaps. The main characteristics of respondents grouped in 30 
each cluster can be seen in Figures 1, 2 and 3, and are described below. 31 

 32 

Table 1. Size of clusters identified in the optimal cluster solution 33 

Cluster Number of survey responses 

Italy Switzerland Netherlands Total 

1 643 125 39 807 

2 150 147 21 318 

3 319 86 40 445 

4 1204 70 34 1308 

5 1538 116 36 1690 

 34 

                                                           
4 Detail the criteria for considering them too small. 
5 The p-values are reported for the Kruskal-Wallis tests that accounted for ties in the data. 



Table 2. Significance of differences between the 5 clusters. 1 

Variable Significant 
differences between 
clusters? 

Variable Significant 
differences between 
clusters? 

Income class Y Efficiency gap Y 

Age range Y Relative savings 
potential 

Y 

Education level Y Energy-saving habits: 
frequency of switching 
lights off 

Y 

Household size N (p=0.051) Energy-saving habits: 
frequency of unplugging 
appliances 

Y 

Environmental 
preference index 

N (p=0.46) Respondents’ value of 
wealth 

Y 

Energy literacy Y Dwelling floor area Y 

Metered electricity 
consumption 

Y Length of residence in 
dwelling 

Y 

Estimated lighting 
electricity demand 

Y Risk preferences Y 

Estimated appliance 
electricity demand  

Y Level of energy-saving 
investments 

Y 

 2 

 3 

Figure 1. Key characteristics of energy consumption of the 5 clusters. 4 



 1 

 2 

Figure 2. Socio-demographic indicators in the 5 clusters. 3 

 4 

 5 

Figure 3. The environmental preference, energy literacy and energy efficient behaviour of the 6 
5 clusters. 7 

 8 

Cluster 1 is comfortably efficient, living in very efficient (86%) or efficient (14%) households, 9 
despite having a higher appliance service demand than other clusters. Households in this 10 
group have already achieved significant savings, and there is little room for further 11 
improvement, with annual electricity consumption being on average 58% less than expected 12 
demand. Members of this group are relatively young, live in slightly smaller households and 13 



have the lowest residence times. They have good energy-saving habits, in particular being the 1 
best at unplugging their appliances, despite having slightly lower environmental preferences. 2 

Cluster 2 is a well-off, medium-efficient group, with a range of household efficiency gaps, the 3 
highest lighting and appliance electricity demand of all groups and potential savings of up to 4 
26% (compared to the expected use) in inefficient households, which represent 24% of the 5 
group. Members have higher education, strikingly higher income levels and are slightly older, 6 
more energy literate and have slightly worse energy-saving habits, than other clusters. They 7 
have slightly larger household sizes, live in slightly larger dwellings, and value wealth highly.  8 

Cluster 3 is an inefficient high-consumption group, whose members live exclusively in very 9 
inefficient households, consume the most electricity of all groups and have potential savings 10 
of 64% on average. They have the largest household sizes, are fairly well-educated and have 11 
high environmental preferences, but have the highest proportion of group members who never 12 
unplug their appliances to save energy.  13 

Cluster 4 is an inefficient low-consumption group, whose members live in inefficient (57%) and 14 
very inefficient (39%) households with average potential energy savings of 28%, have the very 15 
low lighting and appliance electricity demand  and medium levels of electricity consumption. 16 
They live in the smallest households and dwellings of all groups, are relatively low-educated 17 
and have longer residency times than most other groups.  18 

Cluster 5, the resource-constrained and medium-efficient, is also a low-consuming cluster, 19 
where the majority lives in efficient households (92%) or in inefficient households with potential 20 
savings of less than 4.5% to consume electricity according to their expected demand. Members 21 
of this group are have the lowest income, are slightly less energy literate and live the smallest 22 
dwellings of all groups, despite having a similar household size distribution to the comfortably 23 
efficient group.  24 

Analysing the efficiency gap for different groups can reveal how much households are over- or 25 
under-consuming relative to their expected electricity demand. For example, a group of 26 
households with very low efficiency gaps is already very efficient (e.g. cluster 1, which 27 
consumes on average 1,546 kWh less than its expected annual electricity demand); a group 28 
of households with very high efficiency gaps is very inefficient (e.g. cluster 3, which consumes 29 
on average 1,737 kWh more than its expected annual electricity demand), and thus has to 30 
make substantial savings in order to reduce its electricity consumption to expected levels. The 31 
efficiency gap thus describes the “improvement effort” of inefficient households and the 32 
“accomplished savings” of efficient households.  33 

On the other hand, analysing the relative savings can reveal how much of a difference reducing 34 
this efficiency gap could make to a household: two inefficient households requiring the same 35 
improvement effort per kWh may perceive the resulting savings as vastly different if their 36 
expected electricity needs are different. For example, despite households in clusters 2 and 5 37 
having similar average efficiency gaps (on average -483 and -449 kWh/year, respectively), 38 
relative to their electricity demand these gaps are different – lower for cluster 2, whose richer, 39 
larger households demand more electricity, and higher for cluster 5, whose poorer households 40 
living in small dwellings demand less. 41 

An analysis was conducted to determine whether the “improvement effort” or “accomplished 42 
savings”, in conjunction with the relative savings, had an effect on the energy-saving 43 
investments made in each cluster. The analysis could only be performed on 4 out of the 5 44 



original clusters (clusters 1, 3, 4 and 5), due to the lack of investment data for the well-off 1 

medium-efficient group.6  2 

  3 

Figure 4. Relative efficiency gap compared to the absolute energy efficiency for the five clusters. Only 4 
responses from the COBHAM survey are used (left). Energy efficiency expenditures per cluster (right). 5 

As shown in Figure 4, the differences in energy-saving investment levels between groups are 6 
less noticeable than those in efficiency gaps or relative savings, indicating that investment is 7 
based on more factors. These two variables do demonstrate an effect on investment in the two 8 
least efficient clusters: clusters 3 and 4, which invested on average $312/year and $299/year, 9 
respectively, and around a third of whose members invested at the highest level of over 10 
$500/year. However, there are noticeable differences in the distribution of investment levels in 11 
each cluster, with cluster 4 having fewer respondents investing at the mid-levels than would 12 
be expected when considering the significant proportion (61%) that can achieve substantial 13 
relative savings with less effort than those in cluster 37. This is due to significant interaction 14 

effects between the efficiency gap and relative savings (p<0.05, ordered probit regression 15 
model). These differences do not affect cluster 3, but they do affect cluster 4: in the highest 16 
category of relative savings, investments of over $500/year occur even if the efficiency gap is 17 
very high (thus requiring substantial effort), but in the second-highest category of relative 18 
savings, investments of over $500/year are 62% less likely to occur if the efficiency gap is high, 19 
than if it is very high. Without these interaction effects, the proportion of investors in the highest-20 
investing categories, and likely the average investment, would likely be higher in cluster 4. This 21 
slightly counter-intuitive finding may be explained by the fact that these respondents with high 22 
potential savings and high efficiency gaps (61% of cluster 4), have lower overall electricity 23 
consumption levels than their counterparts with very high potential savings, and may therefore 24 
perceive their relative savings less clearly.  25 

Other factors also demonstrate clear effects on respondents’ investments. In cluster 3, larger 26 
households (2-3 person and 4-5 person, which make up 80% of the group) are less likely to 27 
invest significantly in energy-saving measures than single-person households (p<0.05 ordered 28 
probit regression). In cluster 1, which has already accomplished its savings but still invests a 29 
very high amount, investments were negatively affected by increasing environmental 30 
preferences8 and positively affected by increasing the energy-saving habit of unplugging 31 

appliances9 (p<0.05, ordered probit regression). Furthermore, despite still having potential to 32 

                                                           
6 This was because most responses in this group were obtained from the survey that did not collect data on 

energy-saving investments. 
7 Those with high relative savings and high, but not very high, efficiency gaps 
8 Above the threshold of medium-low environmental preferences. 
9 Above the level of “sometimes” unplugging appliances. 



save energy, cluster 5 made the least investments in energy-saving measures, and 1 
significantly less than other groups. This was due to the significant positive effect of income on 2 
investments, at the level of the entire survey population: increasing income levels led to an 3 
increase in investment, apart from when respondents entered the highest income level 4 
(p<0.05, ordered probit regression model). With cluster 5 containing the lowest-income 5 
respondents overall, an income constraint on this group becomes apparent in addition to its 6 
relatively low potential for savings. This potential income constraint is also manifested when 7 
comparing the other clusters: between clusters 3 and 4, the higher-income group is also the 8 
higher-investing group. However, income does not seem to constrain investment by 9 
respondents in cluster 1, a relatively low-income which invests a high amount regardless. 10 

The cluster analysis of survey data demonstrates several points. Firstly, there is a large 11 
variation in socio-demographic indicators, energy-saving habits and energy-saving 12 
investments within groups with similar demand and consumption profiles. Secondly, there was 13 
still heterogeneity in how respondents within the different clusters decided to make energy-14 
saving investments.  These reinforces previous findings on the range and diversity of factors 15 
affecting residential energy demand, consumption and energy-saving investments (Hesselink 16 
& Chappin, 2019;Trotta, 2018;Klöckner & Nayum, 2017;Klöckner & Nayum, 2017). However, 17 
despite this variation, the cluster analysis identified several patterns for the energy-saving 18 
investments of different clusters. At population level, income generally played a significant role 19 
in incentivising investments, in line with a range of existing research (Nair, Gustavsson, & 20 
Mahapatra, 2010). Additional drivers on energy-saving investments also had clear effects 21 
within and between the different groups, indicating that purely income-driven investment 22 
decisions are likely to be unrealistic representations of actual uptake of residential energy-23 
saving measures (Wilson et al., 2014). The efficiency gap and relative savings achievable by 24 
a household partially drove investment, similar to the findings of Hrovatin & Zorić (2018) and 25 
Nakamura (2016) who outline the importance of physical building characteristics and dwelling 26 
efficiency in driving energy-saving investments. On the other hand, there were significant 27 
interaction effects between a household’s efficiency gap and relative savings, while income 28 
and, within certain clusters, household size and energy-saving behaviour, also contribute to 29 
investment levels, confirming the complexity of investment decision-making processes and the 30 
heterogeneity of drivers for these processes. In the next section, we describe the translation 31 
of this heterogeneity in the MUSE ® RBSM, and discuss the differences in model projections 32 
that this may introduce. 33 

 34 

3.2 Application of findings to the RBSM ABM  35 

 36 

The clusters described above were used to define 4 groups of agents with different efficiency 37 
gaps and drivers for investment in new energy technologies. As shown above, energy-saving 38 
investment was driven by a variety of factors, including income, which were used to make 39 
assumptions about the objectives that drive agents, and the constraints that block them, when 40 
they invest in energy-saving measures (Table 3).  41 

 Cluster 1 had already achieved significant savings, but still invested substantially, 42 
driven by good energy-saving habits. We therefore assume that agents associated with 43 
cluster 1 are motivated by the desire to improve their efficiency, and are therefore 44 
assigned “efficiency” and “emissions” objectives. Although they invest significantly 45 
more than their income would suggest, their relatively low income levels may constrain 46 
them from adopting more expensive energy-saving technologies in the future. This 47 



behaviour is captured through an upper constraint on “capital cost” of an asset to only 1 
allow investments in technologies within a certain price range. 2 

 Cluster 3 had very high potential to improve its efficiency and benefit from large relative 3 
savings, and investments were helped by having high income. However, having high 4 
improvement potential was not sufficient to incentivise investment from larger 5 
households. We therefore assume that some agents associated with cluster 3 will be 6 
motivated by “efficiency”, “fuel consumption costs” and “equivalized annual costs” 7 
objectives. Since people within this cluster show the highest income, the required initial 8 
investment is assumed to only have a minor role where the total lifetime cost, EAC, is 9 
more likely to be taken into account. 10 

 Cluster 4 also had high potential to improve its efficiency and benefit from savings, but 11 
less so than cluster 3. Its overall investment was reduced by the under-investment from 12 
respondents with high efficiency gaps and high relative savings potential, who already 13 
had low electricity consumption. Some of agents associated with cluster 4 were 14 
therefore assumed to be motivated by the “fuel consumption costs”, “EAC” and “capital 15 
cost” objectives, but only if their electricity consumption was high.  16 

 Cluster 5 had little potential to further improve its efficiency, having already achieved 17 
significant savings. Most agents were therefore assumed to be driven by the desire to 18 
be more efficient, and some by the desire to reduce their energy costs, and are 19 
therefore assigned “efficiency” and “fuel consumption” objectives, where the potential 20 
for savings still exists. Regardless of their drivers, agents associated with this cluster 21 
were strongly constrained by their low income, which caused the lowest investment 22 
level of all groups. Thus, an upper constraint on the maximum amount of initial 23 
investment is integrated. 24 

Risk preferences and energy literacy were also used as a proxy for agents’ openness to new 25 
technologies, which defined their rules for searching for new energy technologies and the 26 
desired maturity level when deciding to make an energy-saving investment (Table 3).  27 

 28 

Table 3. Translating the cluster findings in to agent objectives 29 

Cluster Objectives of agents Constraints Openness to new 
technologies 

Cluster 1 – 
AGENT 1 

Emissions 
Efficiency 

Potentially constrained by 
capital cost 

High – open to invest in 
new technologies 

Cluster 3 – 
AGENT 2 

Efficiency 
Fuel consumption costs 
Equivalized annual cost 

Not constrained by capital 
cost 
 

Low – prefers to invest in 
mature technologies (10% 
maturity threshold) 

Cluster 4 - 
AGENT 3  

Fuel consumption costs 
(partially) 
Equivalized annual cost 
Capital cost 

Potentially constrained by 
lower electricity 
consumption 

Neutral – neither takes 
high risks with new 
technologies nor prefers 
to invest in mature ones 
(5% maturity threshold) 

Cluster 5 – 
AGENT 4 

Efficiency 
Fuel consumption costs 

Highly constrained by 
capital cost 

Neutral- neither takes high 
risks with new 
technologies nor prefers 
to invest in mature ones 
(5% maturity threshold) 

 30 

These assumptions on objectives and constraints were used to define the 4 agents within the 31 
RBSM for the EU-18 region, and project the uptake of heating and lighting technologies in this 32 
region, up to the year 2050. The key changes to the model that define the new agents are the 33 



share of the population represented by an agent, the demand for energy service, the 1 
technology maturity threshold and constraints on the budget. The assumption here is that the 2 
energy consumption patterns seen for lighting and appliances will also be reflected in other 3 
end-uses of energy for residential buildings. Figures 5 show how the projected uptake of 4 
heating and lighting technologies changes when using the agents derived from the cluster 5 
analysis, versus a model driven exclusively by macro-economic indicators. For the uptake of 6 
lighting technologies, the effect of using cluster-based agents is to increase the pace of uptake 7 
of LED lighting, as well as extend the use of conventional lighting until 2050, where efficient 8 
lighting bulbs dominate in the macro-economically driven model. A similar technology 9 
landscape can be seen for heating in 2050, where heat pumps have been adopted and 10 
replaced conventional boilers; however, in the cluster-based model, initially heat pumps have 11 
a smaller share, but then experience a more distinct transition phase with a rapid uptake in the 12 
period 2025-2035. The macro-economic model, in contrast, shows a more gradual transition. 13 

These different diffusion patterns are an effect of basing the assumptions on the socio-14 
demographic characteristics of an agent and consequently the share of the population 15 
presented by the agent, its financial limitations and openness to new technologies on the 16 
empirical cluster findings, rather than on broader assumptions on the correlation of investor 17 
behavior and macro-economic indicators. For example, in the macro-economically driven 18 
model, the assumption that all high-income, well-educated agents within a certain age group 19 
tend to adopt energy-efficient technologies leads to an uptake of heat pumps in all high-income 20 
groups, and therefore a more gradual diffusion to other groups over time. In the cluster-driven 21 
model, the heterogeneity in investment drivers across agents (also within high income groups), 22 
affected by amongst others the role of efficiency gap and relative savings, means that uptake 23 
of heat pumps will start earlier and has the potential to then grow fast. 24 

 25 

Figure 5. Lighting and heating technology penetration in the model formulation with 1) 26 
cluster-based approach including different service levels 2) macro-economic driven approach 27 

(from left to right). 28 



 1 

We also examined the effect of adding (1) within-cluster variation in service demand, by 2 
creating “clones” for each agent, with the same socio-demographic profile but different demand 3 
levels; and (2) stochastics around the parameters of agents’ decision heuristics (e.g. weights 4 
assigned to the agents’ objectives when deciding whether or not to invest in a technology) to 5 
capture the heterogeneity in decision making of an agent. The five different electricity demand 6 
levels are modelled using a scaling factor based on the electricity consumed in each specific 7 
level, compared to the total average energy consumption across all clusters. To capture the 8 
within-cluster variation, each of the agent ‘clones’ a certain share of the in cluster population 9 
belonging to one demand level. The stochastics are implemented by multiplying the decision 10 
heuristic with a scaler drawn from a normal distribution with mean one and variance of 20%. 11 
Every time the decision process is carried out, a random value from this distribution is taken 12 
and multiplied to the decision heuristic. 13 

Figure 6 shows the mean and standard deviation of the installed stock of lighting and space 14 
heating technologies, over 100 simulations, both for the model with within-cluster variation in 15 
service demand, and the one without. These figures show between the two models, clear 16 
variations in the uptake of heating and lighting technologies. In particular, there are a higher 17 
number of extreme scenarios, identified as outliers, during the transition phase around 2030 18 
and a higher variation in the total uptake towards 2050. An increasing carbon price is assumed, 19 
which means that low-carbon technologies become more competitive around 2030, and a 20 
small change in the investment heuristics leads to the adoptions of different technologies and 21 
thus different transition patterns. Due to the introduction of varied service levels, agents with 22 
less demand will be less incentivized to adopt high efficient technologies quickly, following the 23 
lower energy saving potential. This is obvious for the uptake of lighting technologies, where 24 
LED lighting is taken up more rapidly in the varied service level scenario, and high variations 25 
in the equal service level scenario.   26 

For the uptake of heating technologies, assuming equal service levels leads to an increased 27 
number of outliers but a more stable uptake trend for heat pumps and boilers, whereas 28 
incorporating varied service demand leads to more uncertainty in the uptake of these 29 
technologies towards 2050. 30 



 1 

Figure 6. Heating and lighting technology supply for the equal service scenario compared to the varied 2 
service scenario. The figure shows the mean supply across the 100 runs (indicated by the bar), and 3 

the spread in technology uptake (indicated by the boxplot). 4 

    5 

The results of this agent-based modelling show that the cluster-based modelling of investor 6 
agents introduces differences in the projected uptake of heating and lighting technologies. 7 
These differences are a reflection of the heterogeneity in service level consumption profiles. 8 
By profiling agents according to their improvement potential, the cluster-driven ABM 9 
parameterization was less driven by socio-economic factors, and more by agents’ demand 10 
profiles, showing greater heterogeneity in technology uptake when within-group demand 11 
differences are considered. Ameli & Brandt (2015) state that models that fail to include this 12 
behaviour-based heterogeneity have been found to under-estimate investment in energy-13 
saving technologies. In this study, we find that compared to the macro-economically driven 14 
model, the cluster-based models in the long term show similar levels of efficient technology 15 
uptake but show different transition pathways of how to get there (Figure 6). The inclusion of 16 
non-socio-economic drivers in the cluster-based model, under an increasing carbon price, can 17 
lead to significant shifts towards energy-saving technologies over short periods, at uncertain 18 
points in time. By adding uncertainty around the parameters of agent decision heuristics, 19 
further variation in the speed of the uptake of heating and lighting technologies appears. 20 
Therefore, the uncertainty surrounding heterogeneous decision-making appears to affect the 21 
penetration rates less than the timing and speed of the transition development, which are both 22 
crucial aspects in the context of climate change mitigation. 23 

4. Conclusions  24 

The impact of behavioural factors on user investments in energy-saving measures introduces 25 
heterogeneity in energy technology choices and affects the dynamics of the residential energy 26 
efficiency transition. Agent based models (ABMs) are powerful tools for representing this 27 
heterogeneity, but are challenged by the need for empirical grounding of agent definitions and 28 
behavioural parameters. In this study, we use a cross-country survey to identify patterns and 29 
drivers of energy-saving investments. By estimating household-level electricity demand and 30 
comparing it to metered electricity consumption, we have defined measures of dwelling energy 31 



efficiency, which we used to conduct a cluster analysis and partition the large survey population 1 
into groups with characteristic demand and consumption profiles. These groups formed the 2 
basis for deeper investigation into socio-demographical characteristics, dwelling improvement 3 
potential and investment behaviour. 4 

The cluster analysis showed significant variation in energy consumption and dwelling efficiency 5 
between groups, but much less in socio-demographic characteristics, indicating respondents 6 
who demand and consume energy in very similar ways, cannot easily be mapped to socio-7 
demographic classes. There are, however, interesting patterns both between and within the 8 
clusters. Income, consistently, is the biggest driver that affects demand, dwelling efficiency and 9 
energy-saving investments. Dwelling improvement potential also plays an important role, 10 
incentivising energy efficiency investments in households where they might have a significant 11 
impact. However, there is interference from other socio-demographic and psycho-social 12 
characteristics such as household size, age and, in specific groups, environmental preferences 13 
and energy-saving habits. By translating these drivers and user characteristics into ABM 14 
objectives and agent typologies, respectively, we have empirically grounded the MUSE ® 15 
RBSM and produced a different outlook for the EU-18 residential heating and lighting sectors, 16 
including more heterogeneity in the uptake of energy technologies and thus providing a more 17 
accurate representation of investment in energy-saving measures. A systematic treatment of 18 
uncertainty, as done here by including stochastics in several model parameterizations, is 19 
required in order to reflect on the variety and diversity in the observed energy choices. 20 

Further research can address several limitations in this study. Firstly, longer time-serie data is 21 
required to understand how dwelling improvement potential, environmental and risk 22 
preferences, energy literacy and energy-saving habits may change over time (Friege, 2016). 23 
Secondly, while this research focused on several countries within Europe it would be 24 
interesting to perform similar test in more countries within and outside of Europe. In addition, 25 
the empirical work of this study focussed on lighting and appliances, while ideally energy 26 
consumption data on space heating would be included. Moreover, several other factors could 27 
be incorporated for improved analysis of investment behaviour: perceived consumer 28 
effectiveness – particularly in the case of studies based on self-reported investment (Armitage 29 
& Conner, 2001) actual energy savings investment data and contextual influences such as 30 
household characteristics, home tenure and property characteristics (Wilson et al., 2014).  31 

Capturing heterogeneity in long-term models is complex and strenuous also due to the large 32 
data requirements. However, in the current age of big data collection, the potential of 33 
characterising household energy consumption combined with questionnaires to clarify 34 
household motivations, as was done in this study, is promising. This study demonstrates a 35 
modelling approach to link empirical data to ABM modelling. The results show that including 36 
this heterogeneity in long-term projections can affect transition dynamics, which is surrounded 37 
by large uncertainties affecting directly the impacts of energy policy.  38 



References 1 

 2 

Ameli, N., & Brandt, N. (2015). What Impedes Household Investment in Energy Efficiency 3 
and Renewable Energy? https://doi.org/10.1787/5js1j15g2f8n-en 4 

An, L. (2012). Modeling human decisions in coupled human and natural systems: Review of 5 
agent-based models. Ecological Modelling, 229, 25–36. 6 
https://doi.org/10.1016/j.ecolmodel.2011.07.010 7 

Armitage, C. J., & Conner, M. (2001). Efficacy of the Theory of Planned Behaviour: A meta-8 
analytic review. British Journal of Social Psychology, 40(4), 471–499. 9 
https://doi.org/10.1348/014466601164939 10 

Berardi, U. (2017). A cross-country comparison of the building energy consumptions and 11 
their trends. Resources, Conservation and Recycling, 123, 230–241. 12 

Durlauf, S. N. (2012). Complexity, economics, and public policy. Politics, Philosophy & 13 
Economics, 11(1), 45–75. https://doi.org/10.1177/1470594X11434625 14 

EC. (2018). Eurostat database. Retrieved from https://ec.europa.eu/eurostat/data/database 15 

EU-SILC. (2019). European Union Statistics on Income and Living Conditions. 2008 Module. 16 

Farmer, J. D., & Foley, D. (2009). The Economy Needs Agent Based Modelling. Nature, 17 
460(August), 685–686. https://doi.org/doi:10.1038/460685a 18 

Friege, J. (2016). Increasing homeowners’ insulation activity in Germany: An empirically 19 
grounded agent-based model analysis. Energy and Buildings, 128, 756–771. 20 
https://doi.org/10.1016/J.ENBUILD.2016.07.042 21 

Hesselink, L. X. W., & Chappin, E. J. L. (2019). Adoption of energy efficient technologies by 22 
households--Barriers, policies and agent-based modelling studies. Renewable and 23 
Sustainable Energy Reviews, 99, 29–41. 24 

Hong, T., Taylor-Lange, S. C., D’Oca, S., Yan, D., & Corgnati, S. P. (2016). Advances in 25 
research and applications of energy-related occupant behavior in buildings. Energy and 26 
Buildings, 116, 694–702. 27 

Hrovatin, N., & Zorić, J. (2018). Determinants of energy-efficient home retrofits in Slovenia: 28 
The role of information sources. Energy and Buildings, 180, 42–50. 29 
https://doi.org/10.1016/J.ENBUILD.2018.09.029 30 

IEA. (2017). Energy Technology Perspectives. Paris, France. 31 

Klöckner, C. A., & Nayum, A. (2017). Psychological and structural facilitators and barriers to 32 
energy upgrades of the privately owned building stock. Energy, 140, 1005–1017. 33 
https://doi.org/10.1016/J.ENERGY.2017.09.016 34 

Krey, V. (2014). Global energy-climate scenarios and models: A review. Wiley 35 
Interdisciplinary Reviews: Energy and Environment, 3(4), 363–383. 36 
https://doi.org/10.1002/wene.98 37 

Kriegler, E., Weyant, J. P., Blanford, G. J., Krey, V., Clarke, L., Edmonds, J., … others. 38 
(2014). The role of technology for achieving climate policy objectives: overview of the 39 
EMF 27 study on global technology and climate policy strategies. Climatic Change, 40 
123(3–4), 353–367. 41 

Lopes, M. A. R., Antunes, C. H., & Martins, N. (2015). Towards more effective behavioural 42 
energy policy: An integrative modelling approach to residential energy consumption in 43 



Europe. Energy Research & Social Science, 7, 84–98. 1 

Mundaca, L., Neij, L., Worrell, E., & McNeil, M. (2010). Evaluating energy efficiency policies 2 
with energy-economy models. Annual Review of Environment and Resources, 35, 305–3 
344. 4 

Nair, G., Gustavsson, L., & Mahapatra, K. (2010). Factors influencing energy efficiency 5 
investments in existing Swedish residential buildings. Energy Policy, 38(6), 2956–2963. 6 
https://doi.org/10.1016/J.ENPOL.2010.01.033 7 

Nakamura, E. (2016). Electricity saving behavior of households by making efforts, replacing 8 
appliances, and renovations: empirical analysis using a multivariate ordered probit 9 
model. International Journal of Consumer Studies, 40(6), 675–684. 10 
https://doi.org/10.1111/ijcs.12292 11 

Pettifor, H., Wilson, C., McCollum, D., & Edelenbosch, O. Y. (2017). Modelling social 12 
influence and cultural variation in global low-carbon vehicle transitions. Global 13 
Environmental Change, 47. https://doi.org/10.1016/j.gloenvcha.2017.09.008 14 

Rai, V., & Henry, A. D. (2016). Agent-based modelling of consumer energy choices. Nature 15 
Climate Change, 6(6), 556–562. https://doi.org/10.1038/nclimate2967 16 

Rai, V., & Robinson, S. A. (2015). Agent-based modeling of energy technology adoption: 17 
Empirical integration of social, behavioral, economic, and environmental factors. 18 
Environmental Modelling and Software, 70, 163–177. 19 
https://doi.org/10.1016/j.envsoft.2015.04.014 20 

Sachs, J., Meng, Y., Giarola, S., & Hawkes, A. (2019). An agent-based model for energy 21 
investment decisions in the residential sector. Energy. 22 

Sovacool, B. K., Ryan, S. E., Stern, P. C., Janda, K., Rochlin, G., Spreng, D., … Lutzenhiser, 23 
L. (2015). Integrating social science in energy research. Energy Research & Social 24 
Science, 6, 95–99. 25 

Tavoni, M., Kriegler, E., Riahi, K., Van Vuuren, D. P., Aboumahboub, T., Bowen, A., … 26 
others. (2015). Post-2020 climate agreements in the major economies assessed in the 27 
light of global models. Nature Climate Change, 5(2), 119. 28 

Trotta, G. (2018). Factors affecting energy-saving behaviours and energy efficiency 29 
investments in British households. Energy Policy, 114, 529–539. 30 
https://doi.org/10.1016/J.ENPOL.2017.12.042 31 

Wilson, C., Crane, L., & Chryssochoidis, G. (2014). Why do people decide to renovate their 32 
homes to improve energy efficiency? Retrieved from 33 
http://www.tyndall.ac.uk/sites/default/files/publications/twp160.pdf 34 

Wilson, C., & Dowlatabadi, H. (2007). Models of Decision Making and Residential Energy 35 
Use. Annual Review of Environment and Resources, 32(1), 169–203. 36 
https://doi.org/10.1146/annurev.energy.32.053006.141137 37 

 38 

 39 

 40 

 41 


